Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporfin): comparison of treatment efficacy and distribution characteristics in vivo
نویسندگان
چکیده
A major challenge in the application of a nanoparticle-based drug delivery system for anticancer agents is the knowledge of the critical properties that influence their in vivo behavior and the therapeutic performance of the drug. The effect of a liposomal formulation, as an example of a widely-used delivery system, on all aspects of the drug delivery process, including the drug's behavior in blood and in the tumor, has to be considered when optimizing treatment with liposomal drugs, but that is rarely done. This article presents a comparison of conventional (Foslip®) and polyethylene glycosylated (Fospeg®) liposomal formulations of temoporfin (meta-tetra[hydroxyphenyl]chlorin) in tumor-grafted mice, with a set of comparison parameters not reported before in one model. Foslip® and Fospeg® pharmacokinetics, drug release, liposome stability, tumor uptake, and intratumoral distribution are evaluated, and their influence on the efficacy of the photodynamic treatment at different light-drug intervals is discussed. The use of whole-tumor multiphoton fluorescence macroscopy imaging is reported for visualization of the in vivo intratumoral distribution of the photosensitizer. The combination of enhanced permeability and retention-based tumor accumulation, stability in the circulation, and release properties leads to a higher efficacy of the treatment with Fospeg® compared to Foslip®. A significant advantage of Fospeg® lies in a major decrease in the light-drug interval, while preserving treatment efficacy.
منابع مشابه
Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy
The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...
متن کاملLipid nanoemulsions and liposomes improve photodynamic treatment efficacy and tolerance in CAL-33 tumor bearing nude mice
BACKGROUND Photodynamic therapy (PDT) as promising alternative to conventional cancer treatments works by irradiation of a photosensitizer (PS) with light, which creates reactive oxygen species and singlet oxygen (1O2), that damage the tumor. However, a routine use is hindered by the PS's poor water solubility and extended cutaneous photosensitivity of patients after treatment. In our study we ...
متن کاملIn vivo quantification of photosensitizer concentration using fluorescence differential path-length spectroscopy: influence of photosensitizer formulation and tissue location.
In vivo measurement of photosensitizer concentrations may optimize clinical photodynamic therapy (PDT). Fluorescence differential path-length spectroscopy (FDPS) is a non-invasive optical technique that has been shown to accurately quantify the concentration of Foscan® in rat liver. As a next step towards clinical translation, the effect of two liposomal formulations of mTHPC, Fospeg® and Fosli...
متن کاملPreparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy
The aim of current study was to investigate the effect of Brij decoration of liposomes on in vitro and in vivo characteristics of the nanocarriers. Two hydrophilic Brij surfactants (Brij 35 and Brij 78) with almost similar molecular weight but differing in acyl chain were incorporated into liposomal bilayers at two percentages (5% and 10%). Conventional liposomes (CL) containing egg phosphatidy...
متن کاملDevelopment of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy.
A limitation of photodynamic therapy is the lack of tumor selectivity of the photosensitizer. To overcome this problem, a protocol was developed for coupling of meta-tetrahydroxyphenylchlorin (mTHPC), one of the most promising photosensitizers, to tumor-selective monoclonal antibodies (MAbs). mTHPC was radiolabeled with 131I to facilitate the assessment of the in vitro and in vivo behavior. Aft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013